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It is reported that when a light beam travels through a slab of left-handed medium in the air, the lateral shift
of the transmitted beam can be negative as well as positive. The necessary condition for the lateral shift to be
positive is given. The validity of the stationary-phase approach is demonstrated by numerical simulations for a
Gaussian-shaped beam. A restriction to the slab’s thickness is provided that is necessary for the beam to retain
its profile in the traveling. It is shown that the lateral shift of the reflected beam is equal to that of the
transmitted beam in the symmetric configuration.
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I. INTRODUCTION

The left-handed medium(LHM ) with negative permittiv-
ity and negative permeability has attracted much attention
[1–5] and triggered the debates on the application of the
left-handed slab as so-called “superlenses”[6–10]. Over 30
years ago, Veselago[11] first proposed that this peculiar me-
dium possesses a negative refractive index, which has been
demonstrated at microwave frequencies in recent experiment
[3]. In such media, there are many interesting properties,
such as the reversal of both Doppler effect and Cherenkov
radiation [11], amplification of evanescent waves[6], and
unusual photon tunneling[12,13]. All these phenomena are
rooted in the fact that the phase velocity of light wave in the
LHM is opposite to the velocity of energy flow, that is, the
Poynting vector and the wave vector are antiparallel so that
the wave vector, the electric field, and the magnetic field
form a left-handed system. Furthermore, the negative refrac-
tive index has lately been investigated in photonic crystals at
optical frequencies[14,15].

It is well known that a totally reflected beam experiences
a longitudinal shift, the so-called Goos-Hänchen shift, from
the position predicted by the geometrical optics, because
each of its plane wave components undergoes a different
phase shift[16]. Recently, P. R. Berman[17] and A. La-
khtakia[18] studied extensively the negative Goos-Hänchen
shift at an interface between “normal” and left-handed me-
dia. In order to measure the parameters of left-handed mate-
rial, I. V. Shadrivov et al. [19] further investigated giant
Goos-Hänchen shift in reflection from the left-handed me-
dium. In addition, J. A. Kong’s group[20] elaborated the
lateral displacement of a Gaussian-shaped beam reflected
from a grounded slab with simultaneously negative permit-
tivity and permeability. However, the behavior of the trans-
mitted beam did not draw as much attention as that of the

reflected beam. Only J. A. Konget al. [21] once discussed
the lateral shift of a Gaussian-shaped beam through a slab of
left-handed medium with the given permittivity and perme-
ability. They concluded that the displacement is always nega-
tive, when the permittivity and permeability are both nega-
tive. More recently, Li and his co-researchers[22–24] have
investigated the lateral shift of the transmitted beam through
a slab of optically denser “normal” medium embedded in the
air. It was found that the lateral shift can be negative, which
is similar to the phenomenon taking place in the LHM[3]. A
question arises naturally: Is the lateral shift of the transmitted
light beam through a slab of left-handed medium always
negative?

The main purpose of this paper is to report that the lateral
shift of the transmitted beam through a slab of left-handed
medium can be negative as well as positive. The necessary
condition is put forward for the lateral shift to be positive.
The positivity of the lateral shift is closely related to its
anomalous dependence on the slab’s thickness, which means
that around resonance points, the absolute value of the nega-
tive lateral shift decreases with increasing the thickness of
the slab. It is also shown that the lateral shift depends on the
angle of incidence and the refractive index. The numerical
simulations are performed for a Gaussian-shaped beam, in
order to demonstrate the validity of the stationary-phase ap-
proach. A restriction to the slab’s thickness is obtained that is
necessary for the beam to retain its profile in the traveling. It
is pointed out at the same time that the lateral shift of the
reflected beam is equal to that of the transmitted beam in the
simple symmetric configuration. Finally, we argue the previ-
ous opinion that the lateral shift is always negative when the
permittivity and permeability are both negative and suggest
the explanation of the positive lateral shift in terms of the
interaction of boundary effects of the slab’s two interfaces
with the air.

II. LATERAL SHIFT OF THE TRANSMITTED BEAM
THROUGH A LEFT-HANDED SLAB

For simplicity, we consider a slab of left-handed medium
in the air. Denoted bya, «, m, andn, respectively, the thick-
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ness, permittivity, permeability, and refractive index of the
slab, extending from 0 toa, are shown in Fig. 1. An incident
light beam of angular frequencyv comes from the left at an
incidence angleu0 specified by the inclination of the beam
with respect to thex axis. The field is assumed to be uniform
in the z direction s] /]z=0d and time dependence exps−ivtd
is implied and suppressed. In the case of TE polarization
(TM polarization can be discussed in the same way), the
electric field of the plane wave component of the incident

beam is denoted byEinsxWd=A expsikW ·xWd, where kW ;skx,kyd
=sk sin u ,k cosud, k=s«0m0v2d1/2 is the wave number in the
air, andu stands for the incidence angle of the plane wave
under consideration. According to Maxwell’s equations and
the boundary conditions, the electric field of the correspond-

ing plane wave of the transmitted beam is found to be
EtsxWd=FA exphifkxsx−ad+kyygj, where the amplitude trans-
mission coefficientF=eif / f is determined by the following
complex number:

feif = coskx8a +
i

2
Sxkx

kx8
+

kx8

xkx
Dsin kx8a,

so that

f = intSkx8a

p
+

1

2
Dp + tan−1F1

2
Sxkx

kx8
+

kx8

xkx
Dtan kx8aG ,

s1d

where ints·d stands for the integer part of involved number,
kx8=k8 cosu8, k8=s«mv2d1/2 is the wave number in the slab,
u8 is determined by Snell’s law,n sin u8=sin u, and x
=m /m0. It is clearly seen that the real parameterx can be
either positive or negative. When the medium of the slab is
“normal” material, the parameterx is positive. On the other
hand, when the medium of the slab is left-handed material,
the parameter has the property ofx,0. Correspondingly, the
phase shift(1) of the transmitted wave atx=a with respect to
the incident wave atx=0 has quite different behavior as
compared with that for an ordinary dielectric slab. Here we
are concerned with the lateral shift of the transmitted beam
through a left-handed slab, instead of a “normal” dielectric
slab.

When measured in the same way as the lateral shift of the
reflected beam as is indicated in Fig. 1, the lateral shift of the
transmitted beam is defined as −df /dky [25–28] and is given
by

s=
2xky0a

kx0

kx0
2 skx08

2 + x2kx0
2 d − fkx08

4 + x2kx0
4 − kx0

2 kx08
2s1 + x2dgsin 2 kx08 a/2kx08 a

4x2kx0
2 kx08

2 + skx08
2 − x2kx0

2 d2 sin2 kx08 a
, s2d

wherekx0=k cosu0, ky0=k sin u0, kx08 =k8 cosu08, and u08 is
determined by Snell’s law,n sin u08=sin u0. For the case of
TM polarization, the lateral shifts is still valid, if the param-
eterx=m /m0 is replaced byx8=« /«0.

When the permittivity and permeability are chosen as«
=−«0 and m=−m0, we haven=−1, u0=−u08, kx0

=−kx08 , ky0

=ky08 , andx=−1. In this case, the lateral shift(2) reduces to
the following simple form:

s= a tan u08, s3d

which is nothing but the lateral shift predicted by the geo-
metrical optics, the Snell’s law of refraction, and is in agree-
ment with the result of J. A. Konget al. [21], who observed
that the lateral shift is always negative when the permittivity
and permeability are both negative. In fact, it will be shown
that the lateral shifts can be positive as well as negative for
a slab of left-handed medium.

III. POSITIVE PROPERTY OF THE LATERAL SHIFT

It is seen from the expression(2) for the lateral shift that
when the inequality

kx0
2 skx08

2 + x2kx0
2 d

, fkx08
4 + x2kx0

4 − kx0
2 kx08

2s1 + x2dgsin 2kx08 a/2kx08 a s4d

holds, the lateral shift is positive forx,0. It is reversed in
comparison with the prediction of Snell’s law of refraction
that the lateral shift of the transmitted beam through a left-
handed slab would bea tan u08, which is always negative.
Since sin 2kx08 a/2kx08 aø1, Eq. (4) leads to the necessary
condition for the lateral shift to be positive,

kx0
2 skx08

2 + x2kx0
2 d , kx08

4 + x2kx0
4 − kx08

2kx0
2 s1 + x2d,

which can be expressed as a restriction to the incidence angle
u0 as follows:

FIG. 1. Schematic diagram of a light beam propagating through
a left-handed slab in the air.
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cosu0 , Sn2 − 1

1 + x2D1/2

; cosut. s5d

This means that if the incidence angle satisfies the condition
(5), that is to say, ifu0 is larger than the threshold angleut,
one can always find a thicknessa of the slab where the
lateral shift of the transmitted beam is positive. To our sur-
prise, the lateral shift of the transmitted beam through a left-
handed slab is similar to that of the transmitted beam through
an ordinary dielectric slab, predicted by Snell’s law of refrac-
tion. In this situation, the positive lateral shift means the
equivalent group index of the slab is positive, while the
phase refractive index is still negative forn=−Î«m. The in-
equality(5) shows that positive lateral shifts are more easily
implemented at larger angles of incidence because the larger
the angle of incidence is, the more easily the inequality is
satisfied. As a matter of fact, the inequality(4) is required for
the lateral shift to be positive. Since the function
sin 2kx08 a/2kx08 a decreases rapidly with increasingkx08 a, the
thickness of the slab should be of the order ofp /kx08
=l / f2sn2−sin2 u0d1/2g, so as to make the positive lateral shift
significantly large. That is, the thicknessa of the slab should
be of the order of the wavelengthl.

A typical dependence of the lateral shift on the slab’s
thicknessa is shown in Fig. 2, where the permittivity, per-
meability, and refractive index of the slab are«=−1.89, m
=−0.58, and n=−1.05sut=74.0°d at wavelength l
=23.8 mm[5], a is re-scaled bykx08 a. In order to obtain large
lateral shifts, a large incidence angle is chosen to beu0
=84.5°. Calculation under these conditions shows that the
lateral shift is equal to 67 mm.s2.8ld for a=40 mm and is
even equal to 232.5 mm(.10l) for a=4 mm. It is interest-
ing to note that the oscillation of the lateral shift with respect
to a is closely related to the periodical occurrence of trans-
mission resonance atkx08 a=mpsm=1,2,3, . . .d.

Apart from the above-mentioned positivity of the lateral
shift (2) of the transmitted beam, it has other interesting
properties at transmission resonance that deserving being
pointed out. When the transmission resonance occurs, the
transmission probability expressed by

T =
1

f2 =
4x2kx

2kx8
2

4x2kx
2kx8

2 + skx8
2 − x2kx

2d2 sin2 kx8a

reaches unity. Thus the light beam is totally transmitted. In
this case, the lateral shift becomes

sukx08 a=mp =
kx08

2 + x2kx0
2

2uxukx0kx08
a tan u08, s6d

which is negative and less thana tan u08 that is predicted by
Snell’s law of refraction. Meanwhile, the derivative ofs with
respect to the thicknessa of the slab is, at resonance,

U ] s

] a
U

kx08 a=mp

=
ky0

2uxukx0
3 kx08

2hfkx08
4 + x2kx0

4 − kx0
2 kx08

2s1 + x2dg

− kx0
2 skx08

2 + x2kx0
2 dj. s7d

When the condition(4) is satisfied, this derivative is more
than zero. Therefore we see that under this condition the
absolute value of the lateral shift decreases with increasing
thickness of the slab around resonance points, because the
lateral shifts around resonance points are negative. In other
words, the positive lateral shift depends anomalously on the
thicknessa of the slab around resonance points.

In addition, it is also indicated from Eq.(2) that the lateral
shift depends not only on the thicknessa of the slab, but also
on the angleu0 of incidence and the refractive indexn. To
see the latter more clearly, we draw in Fig. 3 the dependence
of the lateral shift on the incident angleu0, where the thick-
ness of the slab isa=6l, and all the other physical param-
eters are the same as in Fig. 2. Figure 3 shows that the lateral
shift decreases with increasing the incidence angleu0. It is
seen that the peaks of the lateral shift are approximately de-
termined bykx08 a. That is to say, the oscillation of the lateral
shift with respect to the incidence angle also has a close
relation with the periodical occurrence of transmission reso-
nances. Furthermore, when the incidence angle tends top /2,
we havekx0→0 andkx08 → sk82−k2d1/2. In this limit, the lat-
eral shift takes the following form,

FIG. 2. Dependence of the lateral shifts (in units of l ) on the
thicknessa of the slab, where the permittivity, permeability, and
refractive index of the slab are chosen to be«=−1.89, m=−0.58,
andn=−1.05 at wavelengthl=23.8 mm[5], the incidence angle is
84.5°, anda is re-scaled bykx08 a.

FIG. 3. Dependence of the lateral shifts (in units of l) on the
incident angleu0, where the thickness of the slaba=6l, and the
other physical parameters of the left-handed slab are all the same as
Fig. 2.
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lim
u0→p/2

s=
uxucot kx08 a

kx08 a
a tan u0, s8d

which approaches positive infinite. As is shown in Fig. 3, a
strange phenomenon takes place here that for an enough
large incidence anglesu0→p /2d, the positive lateral shift
becomes larger when increasing the incidence angle. Of
course, the transmission probabilityT in this limit tends to
zero in the following way:

lim
u0→p/2

T =
4x2kx0

2

4x2kx0
2 + sk82 − k2dsin2 kx08 a

, s9d

so that very few light beams can travel through the slab at
this large positive lateral shift.

Now, let us have a brief look at the reflected beam. De-
noted byRA expfis−kxx+kyydg the electric field of the corre-
sponding plane wave component of the reflected beam, the
reflection coefficientR is determined by Maxwell’s equations
and the boundary conditions to be

R=
expsip/2d

4f2 S kx8

xkx
−

xkx

kx8
D

3Fsins2kx8ad + iSxkx

kx8
+

kx8

xkx
Dsin2skx8adG . s10d

The factor that determines the phase of the reflection coeffi-
cient is

sins2kx8ad + iSxkx

kx8
+

kx8

xkx
Dsin2skx8ad. s11d

If we denote it byf8 expsif8d, then the phase of the reflec-
tion coefficient will bef8+p /2. Obviously, we have

tan f8 = tanf =
1

2
Sxkx

kx8
+

kx8

xkx
Dtanskx8ad.

It is meant by this equation that the local properties off8
with respect toky are the same as those off. So the lateral
shift of the reflected beam is locally given by Eq.(2) [27,28].
BecauseR=0, at resonance,kx08 a=mp, the reflect beam dis-
appears, and its lateral shift has no definition in this case
[24]. All these amount to a conclusion that when the resonant
transmission does not occur, the lateral shifts of the transmit-
ted and reflected beam are the same in this symmetric con-
figuration when measured in the same way.

Of course, when measured with reference to the predic-
tion of Snell’s law, the lateral shift of the transmitted beam
will be s−a tan u08. Since the lateral shifta tan u08 is less than
zero, when the lateral shift of the reflected beam is positive,
the lateral shift of the transmitted beam is even positive with
reference to the prediction of Snell’s law, especially at some
large angles of incidence.

To show the validity of the above stationary-phase analy-
sis, numerical calculations are performed, which confirm our
theoretical results. In the numerical simulation, an incident

Gaussian-shaped light beam is assumed,EinsxWdux=0

=exps−y2/2wy
2+ iky0yd, which has the Fourier integral of the

following form:

EinsxWdux=0 =
1

Î2p
E

−`

+`

Askydexpsikyyddky, s12d

wherewy=w secu0, w is the local waist of beam, and the
amplitude angular-spectrum distribution is Gaussian,Askyd
=wy expf−swy

2/2dsky−ky0d2g. Consequently, the electric field
of the transmitted beam can be written as

EtsxWd =
1

Î2p
E

−`

+`

FskydAskydexphifkxsx − ad + kyygjdky.

s13d

The integral from −̀ to +` in Eq. (12) guarantees that the
electric field of the incident beam has a perfect Gaussian
profile with respect toy. But for a real incident beam, the
incidence angles of its angular-spectrum components extend
from −p /2 to p /2. So the integral in the expression(13) in
numerical simulations is performed from −ky to ky,

Et
NsxWd =

1
Î2p

E
−ky

ky

FskydAskydexphifkxsx − ad + kyygjdky.

s14d

The numerically calculated lateral shiftsN of the transmitted
beam is defined as follows:

uEt
Nsx = 0,sNdu2 = maxhuEt

Nsx = 0,ydu2j. s15d

Calculations show that the stationary-phase approximation
(2) for the lateral shift is in good agreement with the numeri-
cal result. In Fig. 4 we show such comparisons between the
theoretical and numerical results, where the local waist of the
Gaussian-shaped beam is chosen to bew=5l, and all the
other optical parameters are the same as in Fig. 2. It is noted
that the discrepancy between theoretical and numerical re-
sults is due to the distortion of the transmitted light beam,

FIG. 4. Comparison of theoretical and numerical results of lat-
eral shifts(in units of wavelengthl) with respect toa, where the
local waist of Gaussian-shaped beam isw=5l, all the other physi-
cal parameters are the same as in Fig. 2, anda is re-scaled bykx08 a.
The theoretical result is shown by the solid curve, and the numerical
results is shown by the dotted curve.
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especially when the local waist of the light beam is narrow.
The further numerical simulations show that the wider the
local waist of the incident beam is, the less the transmitted
beam is distorted, and the closer to the theoretical result the
numerical result is.

As pointed out in Ref.[23], for an incident light beam of
the angle spreadingdu, the corresponding spreading ofkx8a
should be much smaller thanp, the period ofuFu, in order
that the stationary-phase approach is valid. This leads to the
following restriction to the thickness of the left-handed slab:

a !
sn2 − sin2 u0d1/2

du sin 2u0
l, s16d

where l is the wavelength of the light. With the angle
spreadingdu=l /pw for a Gaussian-shaped light beam, we
get

a !
psn2 − sin2 u0d1/2

sin 2u0
w. s17d

For instance, if the physical parameters are chosen to ben
=−1.05, u0=84.5°, andw=5l (corresponding to the beam
divergence ofdu,4°), the requirement(17) is calculated to
bea!11w. Clearly, this is compatible to the aforementioned
requirement that the slab’s thickness should be of the order
of the wavelengthl. In addition, it is shown in Fig. 3 that the
angular distanceDu0 between two adjacent peaks is deter-
mined by uDkx08 au=p, which givesDu0=p / skx0a tan u08d. In
order to retain the Gaussian-shaped beam’s profile in the
traveling, the angular distanceDu0 should be much smaller
than the divergence of the beam,du. As a result, the restric-
tion (17) is also required to be satisfied. In a word, within
this restriction the light beam can travel through the left-
handed slab with negligible distortion, thus the stationary-
phase approach in this problem is of validity.

IV. EXPLANATION OF THE LATERAL SHIFT AND
BOUNDARY EFFECTS

The previously discovered lateral shift of the transmitted
beam through a slab of LHM is negative, when the permit-
tivity and permeability are chosen to be«=−«0 and m=
−m0 [21]. On the basis of this result, the authors suggested
that the lateral shift is always negative when the medium of
the slab is left-handed material. How do we understand the
present positive lateral shift? To this end, we rewrite the
lateral shift(2) as

s=
2xkx0ky0skx08

2 + x2kx0
2 da

4x2kx0
2 kx08

2 + skx08
2 − x2kx0

2 d2 sin2 kx08 a

+
uxuky0

kx0kx08

fkx08
4 + x2kx0

4 − kx08
2kx0

2 s1 + x2dgsin 2kx08 a

4x2kx0
2 kx08

2 + skx08
2 − x2kx0

2 d2 sin2 kx08 a
,

s18d

which consists of two parts. One is a thickness-proportional
term multiplied by a periodical factor with respect tokx08 a,
which is always negative forx,0. The other itself is peri-
odical. From the lateral shift(18), we see that it is the second

term that makes the lateral shift to be positive. By averaging
the two periodical functions overkx08 a in one periodp, we
obtain

s̄= a tan u08, s19d

which is always negative. This is exactly what we expect
from Snell’s law of refraction. This may be explained as
follows.

The negative refraction is inferred from the geometrical
optics at a single interface between the “normal” and left-
handed material, which has been demonstrated in the experi-
ment[3]. Moreover, the negative Goos-Hänchen shift for the
totally reflected beam results from the interaction of the
beam with the single interface of the LHM[17,18]. When the
light beam is incident on the left-handed slab at an enough
large angle of incidence, the multiply reflection of the light
beam takes place easily at the slab’s two interfaces with the
air. This structure is often analogous to a Fabry-Perot optical
interferometer[30]: The two interfaces of the slab with the
air play the role of partially transparent mirrors through
which the light is coupled into and out of a resonant cavity.
Here the periodical functions in Eq.(18) can be considered
as the result of the interaction of the boundary effects of the
slab’s two interfaces, which contribute to the lateral shift.
The averaging overkx08 a just effaces the interaction, so as to
find the geometrical optic prediction. Actually, the positive
lateral shifts presented here can be understood from the
physical viewpoint on the reshaping process of the light
beam by the interference of the multireflected beam in the
slab.

When the parameters of the left-handed slab are chosen to
be«=−«0 andm=−m0 [21], the negative lateral shift can also
be understood by the boundary effects. In this case, the left-
handed medium is a perfect match to the free space and the
interfaces show no reflection, so that each plane wave com-
ponent of the light beam can totally travel through the left-
handed slab. Therefore the lateral shift of the transmitted
beam without reshaping is always negative. Mathematically,
we can know from Eq.(18) that the factorsskx08

2−x2kx0
2 d2 and

fkx08
4+x2kx0

4 −kx08
2kx0

2 s1+x2dg are equal to zero for«=−«0 and
m=−m0, so that the periodical functions resulting from the
interaction of the boundary effects do not act on the lateral
shift. Therefore the opinion that the lateral shifts are always
negative when a light beam travels through a left-handed
slab with «=−«0 and m=−m0 is not qualified as generality.
From all these discussions, the lateral shifts of the transmit-
ted beam through a slab of LHM can be negative as well as
positive, when the permittivity and the permeability are both
negative.

V. CONCLUSION

To summarize, we have investigated that the lateral shift
of the transmitted beam though a slab of left-handed medium
can be negative as well as positive by the stationary-phase
approach. A necessary condition(5) is put forward for the
lateral shift to be positive, which is a restriction to the angle
of incidence. The relation of the lateral shift with its anoma-
lous dependence on the thickness of the slab around reso-
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nances points is discussed. The lateral shift also depends on
the incidence angle and the negative refractive index. It is
shown that the lateral shift of the reflected beam is equal to
that of the transmitted beam when they are all measured
from the normal to the interface(the x axis) at which the
incidence point is located. In order to demonstrate the valid-
ity of the stationary-phase approach, numerical simulations
are made for a Gaussian-shaped beam. A restriction to the
thickness of the slab is obtained that is necessary for the
beam to retain its profile in the traveling. The positivity of
the lateral shift can be explained in terms of the interaction
of the boundary effects of the two slab’s interfaces with the
air. Of course, the energy is conserved and the energy flow
can be discussed by the approaches of Laiet al. [29] and J.
A. Kong et al. [21]. Finally, it should be noted that the pos-
sibility of observing the positive lateral shift of the transmit-
ted beam through an ideal, lossless, and nondispersive slab

of LHM presented here remains an open question. However,
with the advance of left-handed materials, we think the lat-
eral shifts may have potential applications not only in the
measurements of the physical parameters of this material but
also in optical modulations.
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